博客
关于我
概率统计Python计算(36)样本数据直方图绘制
阅读量:650 次
发布时间:2019-03-15

本文共 2272 字,大约阅读时间需要 7 分钟。

对总体 X X X的一次具体抽样,得到一个容量为 n n n的样本观测值 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)。记 a = m i n { x 1 , x 2 , ⋯   , x n } a=min\{x_1,x_2,\cdots,x_n\} a=min{

x1,x2,,xn} b = m a x { x 1 , x 2 , ⋯   , x n } b=max\{x_1,x_2,\cdots,x_n\} b=max{
x1,x2,,xn}
。将 [ a , b ] [a, b] [a,b]等分成 m m m个小区间 Δ k \Delta_k Δk(为方便计,其长度亦记为 Δ k \Delta_k Δk), k = 1 , 2 , ⋯   , m k=1,2,\cdots,m k=1,2,,m。记录下落入每个小区间 Δ k \Delta_k Δk内的样本观测值个数 f k f_k fk,在该区间的上方绘制高为 f k n Δ k \frac{f_k}{n\Delta_k} nΔkfk,宽为 Δ k \Delta_k Δk的矩形, k = 1 , 2 , ⋯   , m k=1,2,\cdots,m k=1,2,,m。得到的图形称为样本观测值 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)的直方图。显然,这样绘制的直方图,其总面积为1,称为密度化的直方图。
设样本观测数据存储在数组中。Python的matplotlib包中的pyplot对象有一个专门绘制数据数组的直方图的函数hist。该函数的调用接口为
hist(x, bins, density) \text{hist(x, bins, density)} hist(x, bins, density)
参数x传递数据数组。bins传递分组个数,即小区间个数。参数density传递布尔值True或False,缺省值为False。若为True,意味着密度化直方图。
例1 下面列出84个伊特拉斯坎(Etruscan)人男子的头颅的最大宽度(mm)。

141 148 132 138 154 142 150 146 155 158 150 140 147 148
144 150 149 145 149 158 143 141 144 144 126 140 144 142
141 140 145 135 147 146 141 136 140 146 142 137 148 154
137 139 143 140 131 143 141 149 148 135 148 152 143 144
141 143 147 146 150 132 142 142 143 153 149 146 149 138
142 149 142 137 134 144 146 147 140 142 140 137 152 145

绘制这些数据的直方图。

解: 下列代码绘制本例中伊特拉斯坎人男子的头颅的最大宽度数据的直方图。

import numpy as np                                          #导入numpyfrom matplotlib import pyplot as plt                        #导入绘图对象pyplotsample=np.array([141,148,132,138,154,142,150,146,155,158,   #设置样本数据数组                150,140,147,148,144,150,149,145,149,158,                143,141,144,144,126,140,144,142,141,140,                145,135,147,146,141,136,140,146,142,137,                148,154,137,139,143,140,131,143,141,149,                148,135,148,152,143,144,141,143,147,146,                150,132,142,142,143,153,149,146,149,138,                142,149,142,137,134,144,146,147,140,142,                140,137,152,145])plt.hist(sample, bins=8, density=True)                      #分成8组绘制直方图plt.show()

注意第12行调用pyplot对象的hist函数时所传递的各个参数:传递给接收数据数组参数x的是样本观测值数组sample(在第3~11行设置),传递给确定涵盖所有样本数据的区间分组数的bins为8,传递给决定小矩形高度的参数density为True。运行程序,展示的直方图如下图所示。

在这里插入图片描述
由上图可见,沿密度化直方图的外轮廓描绘曲线,可以得到总体 X X X的密度函数的近似曲线。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

转载地址:http://cepmz.baihongyu.com/

你可能感兴趣的文章
mysql中like % %模糊查询
查看>>
MySql中mvcc学习记录
查看>>
mysql中null和空字符串的区别与问题!
查看>>
MySQL中ON DUPLICATE KEY UPDATE的介绍与使用、批量更新、存在即更新不存在则插入
查看>>
MYSQL中TINYINT的取值范围
查看>>
MySQL中UPDATE语句的神奇技巧,让你操作数据库如虎添翼!
查看>>
Mysql中varchar类型数字排序不对踩坑记录
查看>>
MySQL中一条SQL语句到底是如何执行的呢?
查看>>
MySQL中你必须知道的10件事,1.5万字!
查看>>
MySQL中使用IN()查询到底走不走索引?
查看>>
Mysql中使用存储过程插入decimal和时间数据递增的模拟数据
查看>>
MySql中关于geometry类型的数据_空的时候如何插入处理_需用null_空字符串插入会报错_Cannot get geometry object from dat---MySql工作笔记003
查看>>
mysql中出现Incorrect DECIMAL value: '0' for column '' at row -1错误解决方案
查看>>
mysql中出现Unit mysql.service could not be found 的解决方法
查看>>
mysql中出现update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在 dpkg: 处理软件包 mysql-server-8.0的解决方法(全)
查看>>
Mysql中各类锁的机制图文详细解析(全)
查看>>
MySQL中地理位置数据扩展geometry的使用心得
查看>>
Mysql中存储引擎简介、修改、查询、选择
查看>>
Mysql中存储过程、存储函数、自定义函数、变量、流程控制语句、光标/游标、定义条件和处理程序的使用示例
查看>>
mysql中实现rownum,对结果进行排序
查看>>